

Hash Functions

One major drawback of plain RSA is that the document itself is the signature. How can we separate the signature from the document? For this purpose, **hash functions** are introduced.

Characteristics of Hash Functions (requirements)

- **Fixed-length output:** These are special functions that, given a variable-length input, produce a fixed-length output.
- **Pre-image resistance:** It is difficult to find an input $\langle x \rangle$ that matches a given hash output $\langle y \rangle$, where $\langle y = H(x) \rangle$.
- **Collision resistance:** It is hard to find two different inputs $\langle x \rangle$ and $\langle x' \rangle$ such that $\langle H(x) = H(x') \rangle$ (i.e., both inputs produce the same hash code).
- **Efficiency:** Despite the complexity, $\langle H(x) \rangle$ should be easy to compute.
- **Avalanche effect:** Even a small change in the input (such as flipping just one bit) should result in a significant and unpredictable change in the output, ideally altering about half of the output bits.

Well-known Hash Functions

- **SHA-1 - MD2 - MD5 (Message Digest 5)**

Hash functions play a crucial role in cryptography by allowing us to generate a fixed-size “fingerprint” or “digest” of a document. This makes it possible to sign the hash of the document instead of the entire document itself, making digital signatures more efficient.

From:

<https://edu.iit.uni-miskolc.hu/> - Institute of Information Science - University of Miskolc

Permanent link:

https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:hash_functions?rev=1728314549

Last update: **2024/10/07 15:22**

