tanszek:oktatas:techcomm:information_-_basics:sciences
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| tanszek:oktatas:techcomm:information_-_basics:sciences [2025/09/15 17:33] – [What is science?] knehez | tanszek:oktatas:techcomm:information_-_basics:sciences [2025/09/15 17:52] (current) – [Inductive Sciences] knehez | ||
|---|---|---|---|
| Line 80: | Line 80: | ||
| $$ 1 + 2 + \cdots + k = \frac{k(k+1)}{2}. $$ | $$ 1 + 2 + \cdots + k = \frac{k(k+1)}{2}. $$ | ||
| + | |||
| + | Then for \(n = k+1\): | ||
| + | |||
| + | $$ 1 + 2 + \cdots + k + (k+1) = \frac{k(k+1)}{2} + (k+1). $$ | ||
| **Simplify**: | **Simplify**: | ||
| - | $$ \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2}. $$ | ||
| - | Thus, the formula also holds for \( n = k+1 \). | + | $$ \frac{k(k+1)}{2} + (k+1) = \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2}. $$ |
| + | |||
| + | Thus, the formula also holds for \( n = k+1 \). Thus, by mathematical induction, the formula holds for all \(n\in\mathbb{N}\) | ||
| https:// | https:// | ||
tanszek/oktatas/techcomm/information_-_basics/sciences.1757957618.txt.gz · Last modified: 2025/09/15 17:33 by knehez
