2026/01/17 15:49 1/4 Steps of the Luhn Algorithm

To check if a credit card number is valid, you can use the Luhn algorithm. This is a simple checksum
formula used to identify mistyped or incorrect numbers. Here’s how it works:

Steps of the Luhn Algorithm

1. Reverse the order of the card number's digits.

2. Double every second digit, starting from the first digit (which is now the second digit of the
reversed number).

3. If any doubled value is greater than 9, subtract 9 from it (alternatively, add the digits together;
e.g., 12 becomes 1 + 2 = 3).

4. Sum all the digits (including both doubled and undoubled digits).

5. Check if the sum is divisible by 10. If it is, the card number is valid.
Example

Let’s check if the following card number is valid: 4539 1488 0343 6467
1. Reverse it: 7646 3430 8841 9354
2. Double every second digit: 7, 12, 4, 12, 6,6, 3,6, 8,16,4,2,9,6,5, 8

3. For doubled values greater than 9 (12, 12, 16), add their digits: 7, 3, 4, 3, 6, 6, 3, 6, 8, 7, 4, 2,
9,6,5, 8

4. Sum: 70

5. Since 70 is divisible by 10, the card number is valid.
Quick Check Code in Python

Here's a simple Python code to check if a credit card number is valid using the Luhn algorithm:

def luhn check(card number):

digits = [int(d) for d in str(card number)][::-1]

checksum = sum(digits[0::2]) + sum(sum(divmod(2 * d, 10)) for d in
digits[1l::2])

return checksum % 10 ==

Example usage

card number = "4539148803436467"
print("Valid" if luhn check(card number) else "Invalid")

Here is a C implementation of the algorithm:

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
;ggiﬁ:mz tanszek:oktatas:techcomm:luhn_algortithm_to_protect_credit_card_numbers https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:luhn_algortithm_to_protect_credit_card_numbers?rev=1731413199

12:06

#include <stdio.h>
#include <string.h>
#include <ctype.h>

// Function to validate a Visa card number using the Luhn Algorithm
int isValidVisaCard(const char* cardNumber) {

int length = strlen(cardNumber);

int sum = 0;

int isSecond = 0;

// Traverse the card number in reverse
for (int i = length - 1; i >=0; i--) {
int digit = cardNumber[i] - '0';

if (isSecond) {
// Double every second digit
digit *= 2;
if (digit > 9) {
// Subtract 9 if the doubled value is greater than 9
digit -= 9;

}

// Add digit to the sum

sum += digit;

// Toggle the isSecond flag
isSecond = !isSecond;

}

// If the sum is divisible by 10, the card number is valid
return (sum % 10 == 0);

int main() {
char cardNumber[20];
printf("Enter the Visa card number: ");
scanf("%19s", cardNumber);

if (isValidVisaCard(cardNumber)) {
printf("The card number is valid.\n");

} else {
printf("The card number is invalid.\n");

}

return 0;

Based on the Luhn algorithm, this code will output whether the credit card number is valid or invalid.

Generating a valid credit card number involves adhering to the structure and validation checks used

https://edu.iit.uni-miskolc.hu/ Printed on 2026/01/17 15:49

2026/01/17 15:49 3/4 Steps of the Luhn Algorithm

by credit card companies, primarily the Luhn algorithm. Here’s how to generate a valid credit card
number (without real-world use, as actual issuance requires official channels).

Steps to Generate a Valid Credit Card Number

1. Choose a Bank Identification Number (BIN): The first 6 digits of a credit card (the BIN) identify
the issuing bank. For example:

1. VISA typically starts with 4.
2. MasterCard numbers often start with 51-55.

For this example, we’'ll use a generic BIN: 4539 14" (representing a VISA card).

2. Generate Remaining Digits Except the Checksum: After the BIN, generate random digits for
the rest of the card number, leaving the last digit blank for now. VISA and MasterCard usually have 16
digits, so we’ll generate 9 more digits.

3. Calculate the Checksum with the Luhn Algorithm:

1. Apply the Luhn algorithm to calculate the checksum digit (the last digit), which will make the
number valid.

Example Code to Generate a Valid Card Number

Here’s a Python code that generates a valid credit card number:

import random

def generate credit card():
Start with a sample BIN (6 digits)
bin number = [4, 5, 3, 9, 1, 4] # Example BIN for VISA
Generate the next 9 random digits
card number = bin number + [random.randint(0, 9) for _ in range(9)]
Calculate the Luhn checksum for the first 15 digits
def luhn checksum(card):
digits = card[::-1]
checksum = sum(digits[0::2]) + sum(sum(divmod(2 * d, 10)) for d in
digits[1l::2])
return checksum % 10

Calculate the last digit to make the number valid
check digit = (10 - luhn_checksum(card number)) % 10
card number.append(check digit)

return ''.join(map(str, card number))

Generate a valid credit card number
print(generate credit card())

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last
update:
2024/11/12
12:06

tanszek:oktatas:techcomm:luhn_algortithm_to_protect_credit_card_numbers https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:luhn_algortithm_to_protect_credit_card_numbers?rev=1731413199

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:luhn_algortithm_to_protect_credit_card_numbers?rev=1731413199

Last update: 2024/11/12 12:06

https://edu.iit.uni-miskolc.hu/ Printed on 2026/01/17 15:49

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:luhn_algortithm_to_protect_credit_card_numbers?rev=1731413199

	[Steps of the Luhn Algorithm]
	[Steps of the Luhn Algorithm]
	Steps of the Luhn Algorithm
	Example
	Quick Check Code in Python
	Steps to Generate a Valid Credit Card Number
	Example Code to Generate a Valid Card Number

