2025/11/02 02:50 1/4 LZW coding (compression)

LZW coding (compression)

LZW (Lempel-Ziv-Welch) is a lossless data compression algorithm that builds a dictionary of
substrings during encoding. It compresses data by replacing repeated occurrences of data (patterns)
with shorter codes that represent those patterns. The basic idea is to replace substrings with shorter
codes as the compression progresses, so the output size becomes smaller.

Key Steps in LZW Compression
1. Initialize a dictionary with all single characters in the input data (e.qg., all ASCII characters if the
input is text).

2. Scan the input string character by character, building longer and longer substrings that exist in
the dictionary.

3. Add new substrings to the dictionary and output the dictionary index for the current substring
when it can no longer be extended by the next character in the input.

Example of LZW Compression

Let’s take the input string:
ABABABA

We will step through the LZW compression process.

Step 1: Initialize the Dictionary

At the beginning, the dictionary contains all single characters from the input string.

For this example, let's assume we use indices 0-255 for the ASCII table, so initially, our dictionary
contains:

Index|Character
65 A
66 B

Step 2: Start Encoding

We start reading the input string character by character and follow these steps:
1. Current substring: "“A"

1. It exists in the dictionary (index 65).

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last update:
2024/11/18 tanszek:oktatas:techcomm:lzw_coding https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:lzw_coding?rev=1731961459

20:24
2. Read the next character: "“B"".
3. The new substring "“AB”" does not exist in the dictionary.
4. Output the code for "“A"”" (65) and add "“AB"" to the dictionary with the next available index

(256).

2. Current substring: "“B""

Ll

It exists in the dictionary (index 66).

Read the next character: "“A"".

The new substring ““BA”" does not exist in the dictionary.

Output the code for "“B”" (66) and add "“BA"" to the dictionary with the next available index
(257).

3. Current substring: "“A""

ok wNhE

It exists in the dictionary (index 65).

Read the next character: "“B"".

The substring "“AB"" already exists in the dictionary (index 256).

Read the next character: "“A"", forming " “ABA"".

The new substring ““ABA"" does not exist in the dictionary.

Output the code for "“AB"" (256) and add "“ABA"" to the dictionary with the next available
index (258).

4. Current substring: “A"

ok wne=

It exists in the dictionary (index 65).

Read the next character: "“B"".

The substring "“AB"" already exists in the dictionary (index 256).
Read the next character: "“A"", forming "“ABA"".

No more characters left to read.

Output the code for "“ABA"" (258).

Final Dictionary After Compression

The final dictionary looks like this:

Index/Character
65 A

66 B

256 |AB

257 |BA

258 |ABA

Encoded Output

The final output (in terms of dictionary indices) is:

65 66 256 258

https://edu.iit.uni-miskolc.hu/ Printed on 2025/11/02 02:50

2025/11/02 02:50 3/4 LZW coding (compression)

This represents the compressed version of the original string ““ABABABA™".

Decoding LZW

To decode an LZW-compressed string, you use the same dictionary-based approach but in reverse.
The decoder reconstructs the dictionary entries as it processes the encoded output, using the indices
to retrieve the corresponding substrings.

Let’s go through the decoding process of the encoded sequence 65 66 256 65:
1.) 65: Look up in the dictionary. It maps to "“A"".
» Decoded string so far: "“A"
2.) 66: Look up in the dictionary. It maps to "“B"".
e Decoded string so far: “AB""
3.) 256: Look up in the dictionary. It maps to "“AB"".
» Decoded string so far: " “ABAB""
4.) 258: Look up in the dictionary. It maps to "“ABA"".
e Decoded string so far: " “ABABABA""

The original string ABABABA is reconstructed from the compressed codes.

Summary of LZW Compression

1. Dictionary Initialization: The dictionary starts with all individual characters.

2. Scanning Input: Input data is scanned character by character, grouping together characters to
form substrings.

3. Dictionary Expansion: New substrings are added to the dictionary as the input is processed.

4. Output: The dictionary indices corresponding to the substrings are output, resulting in a
compressed sequence of codes.

LZW is widely used in formats like GIF images and TIFF files for lossless compression. It is particularly
effective for data that contains repeated patterns or symbols.

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last update:
2024/11/18 tanszek:oktatas:techcomm:lzw_coding https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:lzw_coding?rev=1731961459
20:24

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent I|nk

Last update: 2024/11/18 20:24

https://edu.iit.uni-miskolc.hu/ Printed on 2025/11/02 02:50

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:lzw_coding?rev=1731961459

	[LZW coding (compression)]
	LZW coding (compression)
	Key Steps in LZW Compression
	Example of LZW Compression

	Step 1: Initialize the Dictionary
	Step 2: Start Encoding
	Final Dictionary After Compression
	Encoded Output
	Decoding LZW
	Summary of LZW Compression

