User Tools

Site Tools


tanszek:oktatas:techcomm:shanon-fano_method

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
tanszek:oktatas:techcomm:shanon-fano_method [2024/08/27 16:34] kneheztanszek:oktatas:techcomm:shanon-fano_method [2024/10/08 08:45] (current) knehez
Line 26: Line 26:
  
 $$ H = -\left(\frac{2}{4} \log \frac{1}{4} + \frac{2}{8} \log \frac{1}{8} + \frac{4}{16} \log \frac{1}{16}\right) = 2.75 \, \text{[bit].} $$ $$ H = -\left(\frac{2}{4} \log \frac{1}{4} + \frac{2}{8} \log \frac{1}{8} + \frac{4}{16} \log \frac{1}{16}\right) = 2.75 \, \text{[bit].} $$
 +
 +What is the average word length?
 +
 +We can calculate the average word length with the use of this function: \(  L = \sum_{i=1}^n x_i \mu_i \)
 +
 +After substituting:
 +
 +$$ L = \frac{2}{4} \cdot 2 + \frac{2}{8} \cdot 3  + \frac{4}{16} \cdot 4 = 2.75 \,\text{ [bit]}$$
 +
 +The original 8 symbols (X1-X8) can be stored with 4 bits. The average length is 2.75 bits, thus the compressed messages will be  \(\frac{2.75}{4} \approx 68.75\% \) shorter.
  
tanszek/oktatas/techcomm/shanon-fano_method.1724776483.txt.gz · Last modified: 2024/08/27 16:34 by knehez