2025/11/04 07:15 1/5 YAML

YAML

YAML (YAML Ain’t Markup Language) is a human-readable data serialization language designed
for simplicity and clarity. It is often used for configuration files, data exchange between programming
languages, and declarative system descriptions (e.g., Docker Compose, GitHub Actions, Kubernetes).

History

YAML was first proposed in 2001 by Clark Evans, together with Ingy dot Net and Oren Ben-Kiki.
The goal was to create a format that combined the readability of plain text with the structure of
JSON or XML, making it easy for humans to write and understand while remaining machine-parsable.
The acronym originally meant *“Yet Another Markup Language”*, but was later reinterpreted
humorously as **YAML Ain't Markup Language”*, to emphasize that YAML focuses on data, not
documents or markup.

Basic Idea

YAML is based on indentation and key-value pairs, allowing hierarchical (tree-like) data structures
without the need for braces or brackets. It is often described as a human-friendly alternative to
JSON and XML.

Comparison with JSON

Concept JSON YAML

Syntax Uses braces "{} and brackets "[] |Uses indentation (spaces only)
Comments |Not allowed Allowed with “#°

Readability |Machine-friendly Human-friendly

Common use|APIs, web data exchange Configuration, DevOps, CI/CD

Example comparison:

{
"student": {
“name": "Anna",
"age": 21,
"courses": ["Programming", "Databases"]

student:
name: Anna
age: 21
courses:
- Programming

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last update: 2025/11/03 20:39 tanszek:oktatas:techcomm:yaml https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:yaml

- Databases

Syntax Rules

Indentation defines structure (use spaces, not tabs)
Key-value pairs: “key: value®

Lists: prefix "-

Nested structures: indent by two spaces
Comments: start with " #°

Example:

server:
host: localhost
port: 8080
enabled: true
paths:
- /login
- /logout

Data Types

YAML supports a range of basic and complex data types. Values can be written in implicit or explicit
form — YAML automatically detects the type from context, but types can also be specified manually
using tags (e.g., "!lstr’, “!int’).

1. Scalars

Scalars are single values such as strings, numbers, or booleans.

Type Example Notes

String “name: “Alice™ Quotation marks are optional unless special characters
are used.

Integer |"age: 25° No quotes needed; negative values allowed.

Float “price: 19.99° Decimal notation or scientific form (*1.2e+3") supported.

Boolean |“enabled: true’ or “enabled: no” | true/false’, “yes/no’, and “on/off" are equivalent.

Null “value: null” or “value: ~° Both mean “no value”.

Date/Time| created: 2025-11-03" ISO 8601 format is recommended.

Explicit typing (less common but useful for validation):

id: !'lint "42"

flag: !'bool "yes"

pi: !!float "3.14159"

text: !lstr 1234 # forced as string, not number

https://edu.iit.uni-miskolc.hu/ Printed on 2025/11/04 07:15

2025/11/04 07:15 3/5

YAML

2. Strings

YAML offers flexible ways to define strings:

* Plain style: "title: Hello World"

e Single-quoted: "path: 'C:\Users\Name"
(backslashes are preserved literally)

e Double-quoted: "'message: “Linel\nLine2""
(supports escape sequences like "\n", "\t")

e Multi-line literal (*|*): preserves line breaks

description: |
This is line one.
This is line two.

» Folded block (" >"): joins lines into a single paragraph

note: >
This sentence
continues on the next line.

3. Collections

YAML supports two structured types: sequences (lists) and mappings (dictionaries).

» Sequences: ordered lists of elements, marked with *-°

colors:
- red
- green
- blue

e Mappings: unordered key-value pairs

person:
name: Bob
age: 30

city: London

¢ Inline form: lists and dictionaries can also be written on one line

colors: [red, green, blue

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last update: 2025/11/03 20:39 tanszek:oktatas:techcomm:yaml https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:yaml

person: {name: Bob, age: 30

4. Nested Structures

Lists and mappings can be combined to represent complex hierarchical data:

students:
- name: Anna
grades: [A, B, A
- name: Mark
grades:
- B

C
- A
5. Aliases and Anchors

YAML allows referencing the same data in multiple places using anchors (&) and aliases (*).

defaults: &base
host: localhost
port: 8080

development:
<<: *base

debug: true

This feature reduces duplication and keeps configuration files consistent.

6. Summary

e YAML automatically infers most types but supports explicit typing.
e Scalars, sequences, and mappings cover all standard data models.
e Multi-line and folded strings improve readability.

¢ Anchors and aliases allow reuse of data blocks.

Validation and Schema

Just like JSON Schema, YAML files can be validated using schema definitions. Common tools include
Yamale, Kubeval, or the built-in schema support of IDEs such as Visual Studio Code.

https://edu.iit.uni-miskolc.hu/ Printed on 2025/11/04 07:15

2025/11/04 07:15 5/5

YAML

Typical Use Cases

Docker Compose (" docker-compose.yml®)
GitHub Actions (" .github/workflows/*.yml")
Kubernetes manifests (' deployment.yaml’)
Python and Node.js configuration files

Example:

version: "3.8"
services:
web :
image: nginx:latest
ports:
- "8080:80"

Educational Demo Idea

Show the same configuration both in JSON and YAML, and ask:
e Which one is easier to read?

e What are the risks of using indentation as syntax?
e How does the structure represent a syntax tree?

Summary

e YAML is a readable, indentation-based language for structured data.
e |t was created to bridge the gap between human readability and machine processing.
e |t plays a central role in modern DevOps, configuration management, and data

description languages.

From:

https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of [=] Ez

Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:yaml

Last update: 2025/11/03 20:39

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:yaml

	YAML
	History
	Basic Idea
	Comparison with JSON
	Syntax Rules
	Data Types
	1. Scalars
	2. Strings
	3. Collections
	4. Nested Structures
	5. Aliases and Anchors
	6. Summary

	Validation and Schema
	Typical Use Cases
	Educational Demo Idea
	Summary

