
2025/11/04 07:15 1/5 YAML

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

YAML

YAML (YAML Ain’t Markup Language) is a human-readable data serialization language designed
for simplicity and clarity. It is often used for configuration files, data exchange between programming
languages, and declarative system descriptions (e.g., Docker Compose, GitHub Actions, Kubernetes).

History

YAML was first proposed in 2001 by Clark Evans, together with Ingy döt Net and Oren Ben-Kiki.
The goal was to create a format that combined the readability of plain text with the structure of
JSON or XML, making it easy for humans to write and understand while remaining machine-parsable.
The acronym originally meant *“Yet Another Markup Language”*, but was later reinterpreted
humorously as *“YAML Ain’t Markup Language”*, to emphasize that YAML focuses on data, not
documents or markup.

Basic Idea

YAML is based on indentation and key-value pairs, allowing hierarchical (tree-like) data structures
without the need for braces or brackets. It is often described as a human-friendly alternative to
JSON and XML.

Comparison with JSON
Concept JSON YAML
Syntax Uses braces `{}` and brackets `[]` Uses indentation (spaces only)
Comments Not allowed Allowed with `#`
Readability Machine-friendly Human-friendly
Common use APIs, web data exchange Configuration, DevOps, CI/CD

Example comparison:

{
 "student": {
 "name": "Anna",
 "age": 21,
 "courses": ["Programming", "Databases"]
 }
}

student:
 name: Anna
 age: 21
 courses:
 - Programming

Last update: 2025/11/03 20:39 tanszek:oktatas:techcomm:yaml https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:yaml

https://edu.iit.uni-miskolc.hu/ Printed on 2025/11/04 07:15

 - Databases

Syntax Rules

Indentation defines structure (use spaces, not tabs)
Key-value pairs: `key: value`
Lists: prefix `-`
Nested structures: indent by two spaces
Comments: start with `#`

Example:

server:
 host: localhost
 port: 8080
 enabled: true
 paths:
 - /login
 - /logout

Data Types

YAML supports a range of basic and complex data types. Values can be written in implicit or explicit
form — YAML automatically detects the type from context, but types can also be specified manually
using tags (e.g., `!!str`, `!!int`).

1. Scalars

Scalars are single values such as strings, numbers, or booleans.

Type Example Notes

String `name: “Alice”` Quotation marks are optional unless special characters
are used.

Integer `age: 25` No quotes needed; negative values allowed.
Float `price: 19.99` Decimal notation or scientific form (`1.2e+3`) supported.
Boolean `enabled: true` or `enabled: no` `true/false`, `yes/no`, and `on/off` are equivalent.
Null `value: null` or `value: ~` Both mean “no value”.
Date/Time `created: 2025-11-03` ISO 8601 format is recommended.

Explicit typing (less common but useful for validation):

id: !!int "42"
flag: !!bool "yes"
pi: !!float "3.14159"
text: !!str 1234 # forced as string, not number

2025/11/04 07:15 3/5 YAML

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

2. Strings

YAML offers flexible ways to define strings:

Plain style: `title: Hello World`

Single-quoted: `path: 'C:\Users\Name'`

(backslashes are preserved literally)

Double-quoted: `message: “Line1\nLine2”`

(supports escape sequences like `\n`, `\t`)

Multi-line literal (`|`): preserves line breaks

 description: |
 This is line one.
 This is line two.

Folded block (`>`): joins lines into a single paragraph

 note: >
 This sentence
 continues on the next line.

3. Collections

YAML supports two structured types: sequences (lists) and mappings (dictionaries).

Sequences: ordered lists of elements, marked with `-`

 colors:
 - red
 - green
 - blue

Mappings: unordered key–value pairs

 person:
 name: Bob
 age: 30
 city: London

Inline form: lists and dictionaries can also be written on one line

 colors: [red, green, blue]

Last update: 2025/11/03 20:39 tanszek:oktatas:techcomm:yaml https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:yaml

https://edu.iit.uni-miskolc.hu/ Printed on 2025/11/04 07:15

 person: {name: Bob, age: 30}

4. Nested Structures

Lists and mappings can be combined to represent complex hierarchical data:

students:
 - name: Anna
 grades: [A, B, A]
 - name: Mark
 grades:
 - B
 - C
 - A

5. Aliases and Anchors

YAML allows referencing the same data in multiple places using anchors (&) and aliases (*).

defaults: &base
 host: localhost
 port: 8080

development:
 <<: *base
 debug: true

This feature reduces duplication and keeps configuration files consistent.

6. Summary

YAML automatically infers most types but supports explicit typing.
Scalars, sequences, and mappings cover all standard data models.
Multi-line and folded strings improve readability.
Anchors and aliases allow reuse of data blocks.

Validation and Schema

Just like JSON Schema, YAML files can be validated using schema definitions. Common tools include
Yamale, Kubeval, or the built-in schema support of IDEs such as Visual Studio Code.

2025/11/04 07:15 5/5 YAML

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Typical Use Cases

Docker Compose (`docker-compose.yml`)
GitHub Actions (`.github/workflows/*.yml`)
Kubernetes manifests (`deployment.yaml`)
Python and Node.js configuration files

Example:

version: "3.8"
services:
 web:
 image: nginx:latest
 ports:
 - "8080:80"

Educational Demo Idea

Show the same configuration both in JSON and YAML, and ask:

Which one is easier to read?
What are the risks of using indentation as syntax?
How does the structure represent a syntax tree?

Summary

YAML is a readable, indentation-based language for structured data.
It was created to bridge the gap between human readability and machine processing.
It plays a central role in modern DevOps, configuration management, and data
description languages.

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of
Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:yaml

Last update: 2025/11/03 20:39

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:techcomm:yaml

	YAML
	History
	Basic Idea
	Comparison with JSON
	Syntax Rules
	Data Types
	1. Scalars
	2. Strings
	3. Collections
	4. Nested Structures
	5. Aliases and Anchors
	6. Summary

	Validation and Schema
	Typical Use Cases
	Educational Demo Idea
	Summary

