
2026/02/01 19:17 1/7 HTTP protokoll

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

HTTP protokoll

A HTTP (HyperText Transfer Protocol) egy TCP feletti, alkalmazási rétegbeli protokoll, melyet
széleskörben használnak webalkalmazások integrációja során.

Működése

A HTTP egy kliens-szerver protokoll, amely kapcsolatot teremt egy kliens (például egy
webböngésző) és egy szerver (például egy webszerver) között.
A HTTP kérés-válasz modellt használ. A kliens küld egy kérést a szervernek, majd a szerver
választ küld a kliensnek.

A HTTP kérések egy metódusból, egy URL-ből, opcionális fejlécekből és törzsből állnak. A
leggyakoribb HTTP metódusok a GET, POST, PUT és DELETE.
A HTTP válaszok egy állapotkódból, valamint opcionális fejlécekből és választörzsből
állnak. Az állapotkód jelzi, hogy a kérés sikeres volt-e, és a válasz törzse tartalmazza a
kért adatokat (vagy adott esetben a hiba okát).

A HTTP egy állapotmentes protokoll, ami azt jelenti, hogy nem emlékszik a korábbi
kommunikációra a kliens és a szerver között. Minden kérés/válasz csere független az előző
adatcseréktől.

Kérés

Egy példa kérés felépítése a következő:

GET /template/web/img/logo-uni-miskolc.png HTTP/1.1
User-Agent: curl/7.35.0
Host: www.uni-miskolc.hu
Accept: */*

A kérés első sora jelöli meg az elérni kívánt erőforrást. Ezt a kéréshez tartozó, tetszőleges számú
fejléc (header) követi, `Fejléc: érték` alakban.

Ezt követi az opcionális törzs (body) rész, melyben a kérés teljesítéséhez szükséges adatokat
helyezhetünk el tetszőleges formátumban (pl. egy új felhasználó adatait JSON formátumban).

Metódusok

A leggyakrabban alkalmazott metódusok és szimbolikus jelentésük:

GET: Adatok lekérdezése
POST: Új adat hozzáadása
PUT: Meglévő adat módosítása

Last
update:
2025/03/18
17:51

tanszek:oktatas:web_technologia_alapjai:http https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:http?rev=1742320286

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/01 19:17

DELETE: Meglévő adat törlése

Query paraméterek

A GET kérés speciális, mert törzs részt nem tartalmazhat. Helyette - amennyiben szükséges - a
kéréshez tartozó paramétereket ún. query paraméterekként adhatjuk meg.

Példa: /template/web/img/logo-uni-miskolc.png?time=2020-05-01&thumb=true

A paraméterek név=érték formában adhatóak meg. A paramétereket az útvonaltól ?, egymástól &
jel választja el.

Path paraméterek

A HTTP szabványnak ugyan nem része, de a szerverek gyakran támogatják a paraméterek átadását a
megjelölt útvonal részeként:

Példa: GET /api/users/Bela123/repos/my-awesome-project

A szerver ebben az esetben a kérésben szereplő útvonalból olvas ki paramétereket. A fenti példában
ilyen paraméter a felhasználó (Bela123) és a keresett repository elnevezése (my-awesome-
project). Az útvonal ezen részei a keresett repository-nak megfelelően módosíthatók tetszőleges
értékekre.

Kérés törzsében szereplő paraméterek

POST, PUT, DELETE kéréseknél opcionálisan a törzs rész is kitölthető.

Például a következő kérés egy felhasználó létrehozására szolgál:

POST /users HTTP/1.1
User-Agent: curl/7.35.0
Host: api.example.com
Accept: */*
Content-Type: application/json
Content-Length: 28

{ "name": "feri", "gender": "male", "age": 15 }

A fenti üzenet tartalmazza a megfelelő HTTP metódust (POST) és útvonalat (/users). Ezek
együttesen azonosítják a szerver számára, hogy a kliens milyen műveletet szeretne végrehajtani (új
felhasználó létrehozása). Emellett láthatunk még néhány szükséges fejlécet, és a kérés törzsében az
újonnan létrehozni kívánt felhasználó adatait, JSON formátumban.

2026/02/01 19:17 3/7 HTTP protokoll

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Válasz

A kliens kéréseire a szerver válaszokat ad. Egy kéréshez legfeljebb egy válasz tartozhat.

A HTTP válasz a következőképpen épül fel:

HTTP/1.1 200 OK
Date: Thu, 18 Mar 2021 13:02:06 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 29
Connection: keep-alive
X-Powered-By: Express
X-Ratelimit-Limit: 1000
X-Ratelimit-Remaining: 999
X-Ratelimit-Reset: 1616072536
Cache-Control: no-cache
Pragma: no-cache

{ "id": 101, "name": "feri", "gender": "male", "age": 15 }

A válasz egyebek mellett tartalmaz egy státuszkódot (a fenti példában 200), ami a művelet
sikerességéről ad információt.

Ezt követik a válaszhoz tartozó fejlécek.

A törzs rész opcionális: a fenti válaszban a szerver visszaküldte az adatbázishoz hozzáadott
felhasználó adatait, köztük egy azonosítóval, amire a későbbiekben a kliens hivatkozhat, ha szeretné
elérni a létrehozott felhasználót.

HTTP státuszkódok

Az egyes HTTP státuszkódok jelentését a HTTP specifikációja tartalmazza, általánosságban a
következők írhatóak le róluk:

1xx: Informatív üzenet (pl. 101 Switching Protocols)
2xx: A kérést a szerver sikeresen megkapta, értelmezte, teljesítette (pl. 200 OK, 201 Created)
3xx: Átirányítás (pl. 301 Moved Permanently)
4xx: Kliens hiba (pl. 400 Bad Request, 404 Not found)
5xx: Szerver hiba (pl. 503 Service Unavailable)

(Elérhető státuszkódok)

Példa - JSONPlaceholder API

A JSONPlaceholder egy ingyenes, nyilvánosan elérhető API, amelyet elsősorban kezdő webfejlesztők

https://tools.ietf.org/html/rfc2616#section-10
https://jsonplaceholder.typicode.com/

Last
update:
2025/03/18
17:51

tanszek:oktatas:web_technologia_alapjai:http https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:http?rev=1742320286

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/01 19:17

használnak HTTP API-k tesztelésére és gyakorlására. Az API különböző adatokkal rendelkezik, például
felhasználókkal, bejegyzésekkel, kommentekkel és egyéb információkkal, amelyeket HTTP kérésekkel
kérhetünk le vagy módosíthatunk.

Ingyenes: Bármikor használhatjuk, nem szükséges regisztráció vagy autentikáció.
Fiktív adatok: Az API-ban szereplő adatok nem valódiak, hanem példák, amelyek segítenek a
fejlesztőknek a gyakorlásban.
Könnyen használható: Az API-t könnyen elérhetjük GET, POST, PUT, DELETE HTTP kérésekkel.

A JSONPlaceholder API könnyen használható különböző eszközökkel, például:

Böngésző: A GET kéréseket közvetlenül a böngésző címsorába írva is megnézheted.
Postman: A Postman segítségével POST, PUT, DELETE kéréseket is küldhetsz.
Fetch API: JavaScript segítségével lekérheted az adatokat és dolgozhatsz velük egy
webalkalmazásban.

HTTP kérések feldolgozása fejlesztői eszközökkel

HTTP kérések küldésére és válaszok fogadására számos módszer áll rendelkezésre, amelyek az
egyszerű parancssori alkalmazásoktól (pl. curl, wget) kezdve a grafikus felülettel rendelkező
eszközökön (pl. webböngészők, Postman) át a programozói könyvtárakig (pl. Fetch API, Axios, OkHttp)
terjednek.

Míg a programkönyvtárakat általában webalkalmazások fejlesztésére használjuk, addig a parancssori
eszközök és a GUI-val rendelkező alkalmazások elsősorban tesztelési célokat szolgálnak, lehetővé
téve a HTTP kérések gyors ellenőrzését és elemzését.

Google Chrome

A Chrome fejlesztői eszközeivel (DevTools) könnyen nyomon követhetők a HTTP kérések:

Gyors teszteléshez nyiss egy új lapot, nyomd le az F12 gombot, majd töltsd be a
https://jsonplaceholder.typicode.com/posts URL-t!

A DevTools-ban válts át a Network fülre, majd keresd meg az indított kérést:

https://jsonplaceholder.typicode.com/posts

2026/02/01 19:17 5/7 HTTP protokoll

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Az itt megjelenő eszköztár segítségével elemezhető a HTTP forgalom:

A legfontosabb funkciók:

Headers fül: Kérés és válasz fejléceinek, valamint a válasz státuszkódjának a megtekintése.
Preview fül: A válasz törzsének megtekintése, elemzése.
Response fül: A válasz törzsének megtekintése nyers szövegként.

A DevTools segítségével a webalkalmazásunk által kezdeményezett HTTP kommunikáció is
megtekinthető. Fontos azonban, hogy POST, PUT, és DELETE kéréseket közvetlenül csak
programkódból tudunk küldeni. Ahhoz, hogy ilyen kéréseket gyorsan, manuálisan tudjunk előállítani,
szükség lehet valamilyen külső alkalmazás (pl. Postman) használatára.

Postman

A Postman egy API tesztelő alkalmazás, amellyel HTTP kéréseket lehet küldeni és válaszokat
elemezni. Tegyük fel, hogy a korábban megtekintett JSONPlaceholder API segítségével egy új
bejegyzést szeretnénk létrehozni. Ehhez egy POST kérést kell küldenünk a /posts útvonalra.

Ennek menete:

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:web_technologia_alapjai:pasted:20250317-123830.png?id=tanszek%3Aoktatas%3Aweb_technologia_alapjai%3Ahttp
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:web_technologia_alapjai:pasted:20250317-123920.png?id=tanszek%3Aoktatas%3Aweb_technologia_alapjai%3Ahttp
https://jsonplaceholder.typicode.com/
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:web_technologia_alapjai:pasted:20250317-124827.png?id=tanszek%3Aoktatas%3Aweb_technologia_alapjai%3Ahttp

Last
update:
2025/03/18
17:51

tanszek:oktatas:web_technologia_alapjai:http https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:http?rev=1742320286

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/01 19:17

Nyissunk új lapot a Postman-ben!1.
Állítsuk be a POST HTTP metódust!2.
Állítsuk be a szükséges útvonalat: https://jsonplaceholder.typicode.com/posts3.
A kérés törzsének beállításához váltsunk a Body fülre!4.
A kérés formátumának beállításához válasszuk a raw opciót!5.
Majd válasszuk ki a JSON formátumot!6.
A kérés törzsét állítsuk be a következő JSON objektumra, majd nyomjuk meg a Send gombot:7.

{
 "userId": 3,
 "id": 1,
 "title": "New post",
 "body": "Some very interesting information for you all."
}

A szerver válasza az ablak alján jelenik meg. A lenti screenshoton az látható, hogy a szerver 201
Created státuszkóddal nyugtázta az új bejegyzés létrehozását, a válasz törzsében pedig a létrehozott
bejegyzést küldte vissza. A további fülek segítségével megtekinthetők még egyebek mellett a válasz
fejlécei, valamint a válaszban szereplő cookie-k is:

HTTP kérések feldolgozása JavaScript segítségével

A kész webalkalmazásban természetesen JavaScript kód segítségével szükséges összeállítani a
szerver felé küldött HTTP kéréseket. Erre a célra egyebek mellett a Fetch API használható.

A Fetch API a kéréseket aszinkron módon, Promise-ok segítségével kezeli, emiatt speciális szintaktikát
kell használnunk! A then metódusnak a sikeres kérés esetén lefutó függvényt, míg a catch
metódusnak a hibakezelő függvényt szükséges paraméterként átadni.

A következő kód az 1-es azonosítójú bejegyzés tartalmát kérdezi le a szerverről:

fetch("https://jsonplaceholder.typicode.com/posts/1")
 .then(response => response.json())
 .then(data => console.log(data))

https://jsonplaceholder.typicode.com/posts
https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:web_technologia_alapjai:pasted:20250317-125012.png?id=tanszek%3Aoktatas%3Aweb_technologia_alapjai%3Ahttp
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

2026/02/01 19:17 7/7 HTTP protokoll

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 .catch(error => console.error("Hiba:", error));

A szerver válaszát először JSON objektummá (bizonyos esetekben egyszerű szöveggé) szükséges
konvertálni (2. sor), ezt követően elérhetők a válaszban szereplő adatok. A 3. sorban ezeket a
konzolra íratjuk, de ehelyett akár a felhasználói felületen is megjeleníthetnénk, a DOM módosításával.

A hibakezelés a catch metódusban történik. Ez akkor fordul elő, ha a szerver nem küld választ, vagy
a válasz nem JSON formátumú.

FONTOS! Ha a szerver explicit módon, hiba státuszkód küldésével válaszol, a kód végrehajtása a
then ágban folytatódik. A művelet sikerességét a response.ok, illetve response.status
tulajdonságok segítségével ellenőriznünk kell (pl. hiba esetén felugró ablakot jeleníthet meg az
alkalmazásunk)! Az egyszerűség kedvéért ettől a fenti példában eltekintettünk.

Előző kérésünk egyszerű GET kérés volt, mely nem tartalmazott komplex adatokat. A következő kód
POST kérés küldését mutatja be, új bejegyzés létrehozásához. Ebben az esetben a kérés Content-
Type fejlécét is szükséges beállítanunk, jelezve a szervernek, hogy JSON formátumban küldjük a
kérés törzsét. A törzset egyszerű szövegként szükséges elküldenünk, így a JavaScript objekumunkból
a JSON.stringify függvény meghívásával JSON sztringet szükséges generálnunk:

fetch("https://jsonplaceholder.typicode.com/posts", {
 method: "POST",
 headers: {
 "Content-Type": "application/json"
 },
 body: JSON.stringify({ title: "Teszt", body: "Ez egy teszt.", userId: 1 })
})
 .then(response => response.json())
 .then(data => console.log(data))
 .catch(error => console.error("Hiba:", error));

A válasz kezelése ebben az esetben is a korábban ismertetett módon történik.

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:http?rev=1742320286

Last update: 2025/03/18 17:51

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:http?rev=1742320286

	HTTP protokoll
	Működése
	Kérés
	Metódusok
	Query paraméterek
	Path paraméterek
	Kérés törzsében szereplő paraméterek

	Válasz
	HTTP státuszkódok

	Példa - JSONPlaceholder API
	HTTP kérések feldolgozása fejlesztői eszközökkel
	Google Chrome
	Postman

	HTTP kérések feldolgozása JavaScript segítségével

