
2026/02/01 19:17 1/6 DOM manipuláció JavaScript segítségével

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

DOM manipuláció JavaScript segítségével

A Document Object Model (DOM) a weboldalak szerkezetét írja le egy hierarchikus fa formájában,
amelyen keresztül a JavaScript hozzáférhet és módosíthatja az oldal tartalmát és szerkezetét. A DOM
manipuláció az egyik legfontosabb eszköz a dinamikus weboldalak fejlesztésében, mivel lehetővé
teszi az elemek hozzáadását, eltávolítását, módosítását, valamint az eseménykezelést.

Document Object Model

A DOM (Document Object Model) egy platformfüggetlen, objektumalapú reprezentációja egy
HTML- vagy XML-dokumentumnak. A DOM egy fa struktúrában írja le az oldal elemeit, ahol minden
HTML-címke egy csomópontként (node) jelenik meg, és hierarchikus kapcsolatban áll a többi
elemmel. A DOM-on keresztül JavaScript segítségével elérhetjük és módosíthatjuk az oldal tartalmát
és szerkezetét.

A DOM egy objektummodell, amelyben minden HTML-elem egy objektumként létezik. Például egy
egyszerű HTML-oldal:

<html>
 <head>
 <title>My title</title>
 </head>
 <body>
 <h1>A heading</h1>
 Link text
 </body>
</html>

A DOM ezt az oldalt a következő fastruktúraként kezeli:

Last
update:
2025/03/10
17:57

tanszek:oktatas:web_technologia_alapjai:js_dom https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:js_dom?rev=1741629443

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/01 19:17

A document objektum a teljes HTML-dokumentumot képviseli, és az egyik legfontosabb kiindulópont
a DOM manipuláció során. Segítségével elérhetjük az oldal elemeit, új elemeket hozhatunk létre,
módosíthatjuk a tartalmat, és kezelhetjük az eseményeket. A DOM többféle csomópontot tartalmaz,
de a legfontosabbak a következők:

Node (csomópont): Minden, ami a DOM fában található, egy csomópont (node). A csomópontok
különböző típusúak lehetnek, például elemek, attribútumok vagy szövegek.
Element (elem): Az element típusú csomópontok a tényleges HTML-elemeket képviselik (pl.
div, p, h1 stb.).

Példa: <p>Ez egy bekezdés.</p>
Attribute (attribútum): Az attribute típusú csomópontok egy HTML-elem tulajdonságait tárolják
(pl. id, class, src, href stb.).

Példa: <p id=“main-text”>Ez egy fontos bekezdés.</p>
Text (szöveg): A text típusú csomópontok a HTML-elemek belső szöveges tartalmát tárolják.

Példa: <p>Ez egy bekezdés.</p>

A DOM lehetővé teszi, hogy JavaScript segítségével:

Elemeket válasszunk ki és módosítsunk (pl. document.getElementById(),
document.querySelector())
Új elemeket hozzunk létre és illesszünk be (pl. createElement(), appendChild())
Eseménykezelőket hozzunk létre (pl. addEventListener())
Stílusokat és attribútumokat módosítsunk (pl. element.style, setAttribute())

DOM manipulációs technikák

A DOM elérésére a globális document objektumon keresztül van lehetőség, melynek dokumentációja

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:web_technologia_alapjai:pasted:20250310-124112.png?id=tanszek%3Aoktatas%3Aweb_technologia_alapjai%3Ajs_dom

2026/02/01 19:17 3/6 DOM manipuláció JavaScript segítségével

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

itt található meg: https://developer.mozilla.org/en-US/docs/Web/API/Document

A következő bekezdések a teljesség igénye nélkül mutatnak be néhány gyakran használt metódust.

Elemek kiválasztása

A DOM-ban található csomópontok elérését a következő függvények biztosítják:

getElementById(id) – Visszaadja az első olyan elemet, amelynek id attribútuma
megegyezik a megadott értékkel. Ha nincs ilyen elem, null értéket ad vissza.
getElementsByClassName(className) – Egy HTMLCollection-t ad vissza, amely
tartalmazza az összes olyan elemet, amely rendelkezik a megadott osztálynévvel.
getElementsByTagName(tagName) – Egy HTMLCollection-t ad vissza, amely tartalmazza
az összes megadott típusú HTML elemet.
querySelector(selector) – Az első olyan elemet adja vissza, amely illeszkedik a megadott
CSS-szelektorhoz. Ha nincs találat, null-t ad vissza.
querySelectorAll(selector) – Egy NodeList-et ad vissza, amely tartalmazza az összes
olyan elemet, amely megfelel a megadott CSS-szelektornak.

<!DOCTYPE html>
<html lang="hu">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>DOM - Elem kiválasztás</title>
</head>
<body>

 <h1 id="title">Főcím</h1>
 <p class="text">Ez egy bekezdés.</p>
 <p class="text">Ez egy másik bekezdés.</p>
 <div>
 Span 1
 Span 2
 </div>

 <script>
 // Egy adott ID-val rendelkező elem kiválasztása
 let titleElement = document.getElementById("title");
 console.log(titleElement.textContent); // Főcím

 // Osztály alapján több elem kiválasztása
 let textElements = document.getElementsByClassName("text");
 console.log(textElements[0].textContent); // Ez egy bekezdés.

 // Összes adott típusú elem kiválasztása
 let spans = document.getElementsByTagName("span");
 console.log(spans.length); // 2

https://developer.mozilla.org/en-US/docs/Web/API/Document

Last
update:
2025/03/10
17:57

tanszek:oktatas:web_technologia_alapjai:js_dom https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:js_dom?rev=1741629443

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/01 19:17

 // Az első találat kiválasztása CSS-szelektorral
 let firstParagraph = document.querySelector(".text");
 console.log(firstParagraph.textContent); // Ez egy bekezdés.

 // Az összes találat kiválasztása CSS-szelektorral
 let allParagraphs = document.querySelectorAll(".text");
 allParagraphs.forEach(p => console.log(p.textContent));
 // Ez egy bekezdés.
 // Ez egy másik bekezdés.
 </script>
</body>
</html>

Tartalom módosítása

A DOM-ban található csomópontok tartalmát a következő tulajdonságok segítségével lehet elérni,
illetve módosítani:

innerText és textContent – Mindkettő a szöveges tartalom lekérésére vagy módosítására
szolgál, de különbség köztük, hogy az innerText figyelembe veszi a CSS láthatósági
beállításait, míg a textContent minden szöveget visszaad, függetlenül a stílusoktól.
innerHTML – Az elem HTML tartalmának beállítására vagy lekérésére szolgál. Vigyázni kell
vele, mert ha külső bemenetet tartalmaz, az alkalmazás sérülékennyé válhat az XSS
támadásokkal szemben.

<!DOCTYPE html>
<html lang="hu">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>DOM tartalom módosítása</title>
 <style>
 .hidden {
 display: none;
 }
 </style>
</head>
<body>

 <h1 id="title">Eredeti cím</h1>
 <p id="paragraph">Ez egy bekezdés HTML formázással.</p>
 <p id="hiddenText" class="hidden">Ez egy rejtett szöveg.</p>

 <script>
 // innerText: figyelembe veszi a szöveg egyes részeinek láthatóságát
 let title = document.getElementById("title");
 console.log(title.innerText); // Eredeti

2026/02/01 19:17 5/6 DOM manipuláció JavaScript segítségével

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

 title.innerText = "Új cím";
 // textContent: nem veszi figyelembe a CSS láthatóságot
 let hiddenText = document.getElementById("hiddenText");
 console.log(hiddenText.textContent); // Ez egy rejtett szöveg

 // innerHTML: a HTML tartalmat is kezeli
 let paragraph = document.getElementById("paragraph");
 console.log(paragraph.innerHTML); // Ez egy
bekezdés HTML formázással.
 paragraph.innerHTML = "Ez egy új bekezdés
módosított HTML tartalommal.";
 </script>
</body>
</html>

Attribútumok és stílus módosítása

setAttribute, getAttribute
classList.add, classList.remove, classList.toggle
element.style

Új elemek létrehozása és hozzáadása

createElement
appendChild, prepend
insertBefore

Eseménykezelés

addEventListener

Feladat

A feladat egy egyszerű, dinamikus teendő lista készítése.

Legyen egy <input> szöveges mező, ahova a felhasználó beírhat egy új teendőt.
Legyen egy „Hozzáadás” gomb, melynek lenyomásakor a beírt szöveg kerüljön fel egy
listára.
A listán szereplő elemekre kattintva azok legyenek áthúzva (CSS: text-decoration: line-
through).
Az oldal elemeinek formázásához használj CSS stílusokat!

Az elkészült megoldást töltsd fel a GitHub repository-dba!

Last
update:
2025/03/10
17:57

tanszek:oktatas:web_technologia_alapjai:js_dom https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:js_dom?rev=1741629443

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/01 19:17

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:js_dom?rev=1741629443

Last update: 2025/03/10 17:57

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:js_dom?rev=1741629443

	[DOM manipuláció JavaScript segítségével]
	DOM manipuláció JavaScript segítségével
	Document Object Model
	DOM manipulációs technikák
	Elemek kiválasztása
	Tartalom módosítása
	Attribútumok és stílus módosítása
	Új elemek létrehozása és hozzáadása
	Eseménykezelés

	Feladat

