2026/02/01 19:17 1/8 DOM manipuldcid JavaScript segitségével

DOM manipulacio JavaScript segitségével

A Document Object Model (DOM) a weboldalak szerkezetét irja le egy hierarchikus fa formajaban,
amelyen keresztiil a JavaScript hozzaférhet és médosithatja az oldal tartalmat és szerkezetét. A DOM
manipulacié az egyik legfontosabb eszkdz a dinamikus weboldalak fejlesztésében, mivel lehetévé
teszi az elemek hozzaadasat, eltavolitasat, médositasat, valamint az eseménykezelést.

Document Object Model

A DOM (Document Object Model) egy platformfliggetlen, objektumalapu reprezentacioja egy
HTML- vagy XML-dokumentumnak. A DOM egy fa struktiraban irja le az oldal elemeit, ahol minden
HTML-cimke egy csomoépontként (node) jelenik meg, és hierarchikus kapcsolatban all a tobbi
elemmel. A DOM-on keresztll JavaScript segitségével elérhetjiik és mddosithatjuk az oldal tartalmat
és szerkezetét.

A DOM egy objektummodell, amelyben minden HTML-elem egy objektumként létezik. Példaul egy
egyszer(HTML-oldal:

<html>
<head>
<title>My title</title>
</head>
<body>
<h1>A heading</hl>
Link text
</body>
</html>

A DOM ezt az oldalt a kovetkezd fastrukturaként kezeli:

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last

;83;}8:3/10 tanszek:oktatas:web_technologia_alapjai:js_dom https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:js_dom?rev=1741630969

18:22

document
Root element:
<html=

Element:

<head=

Element:
<tjtle=

Test:

||"..|}r titI'E"
Element=
=zh1>
Taxt:
"A heading”

Element: Attribute:

a= href
Texr:
"Link text"

A document objektum a teljes HTML-dokumentumot képviseli, és az egyik legfontosabb kiindulépont
a DOM manipulacié soran. Segitségével elérhetjik az oldal elemeit, Uj elemeket hozhatunk létre,
madosithatjuk a tartalmat, és kezelhetjlik az eseményeket. A DOM tobbféle csomdpontot tartalmaz,
de a legfontosabbak a kovetkezok:

Element:
<body=

Document Object Model

<

* Node (csomdpont): Minden, ami a DOM faban talalhatd, egy csomépont (node). A csomépontok
kilonb6z4 tipusuak lehetnek, példaul elemek, attribdtumok vagy szévegek.
e Element (elem): Az element tipusl csomdpontok a tényleges HTML-elemeket képviselik (pl.
div, p, hl stb.).
o Példa: <p>Ez egy bekezdés.</p>
e Attribute (attribGtum): Az attribute tipust csomépontok egy HTML-elem tulajdonsagait taroljak
(pl. id, class, src, href stb.).
o Példa: <p id=“main-text”>Ez egy fontos bekezdés.</p>
» Text (szoveq): A text tipusd csomdpontok a HTML-elemek belsd szoveges tartalmat taroljak.
o Példa: <p>Ez egy bekezdés.</p>

A DOM lehetdvé teszi, hogy JavaScript segitségével:

e Elemeket valasszunk ki és mddositsunk (pl. document.getElementById(),
document.querySelector())

« Uj elemeket hozzunk létre és illessziink be (pl. createElement (), appendChild())

» Eseménykezel6ket hozzunk létre (pl. addEventListener())

e Stilusokat és attribitumokat mddositsunk (pl. element.style, setAttribute())

DOM manipulacids technikak

A DOM elérésére a globalis document objektumon keresztiil van lehetéség, melynek dokumentacidja

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/01 19:17

https://edu.iit.uni-miskolc.hu/_detail/tanszek:oktatas:web_technologia_alapjai:pasted:20250310-124112.png?id=tanszek%3Aoktatas%3Aweb_technologia_alapjai%3Ajs_dom

2026/02/01 19:17 3/8 DOM manipuldcid JavaScript segitségével

itt talalhaté meg: https://developer.mozilla.org/en-US/docs/Web/API/Document

A kovetkezd bekezdések a teljesség igénye nélkll mutatnak be néhany gyakran hasznalt metddust.

Elemek kivalasztasa

A DOM-ban talalhaté csomdpontok elérését a kovetkez6 figgvények biztositjak:

e getElementById(id) - Visszaadja az els olyan elemet, amelynek id attribUtuma
megegyezik a megadott értékkel. Ha nincs ilyen elem, null értéket ad vissza.

e getElementsByClassName(className) - EQy HTMLCollection-t ad vissza, amely
tartalmazza az 6sszes olyan elemet, amely rendelkezik a megadott osztalynévvel.

e getElementsByTagName (tagName) - EQy HTMLCollection-t ad vissza, amely tartalmazza
az 0sszes megadott tipusd HTML elemet.

e querySelector(selector) - Az els6 olyan elemet adja vissza, amely illeszkedik a megadott
CSS-szelektorhoz. Ha nincs talalat, null-t ad vissza.

e querySelectorAll(selector) - Egy NodeList-et ad vissza, amely tartalmazza az dsszes
olyan elemet, amely megfelel a megadott CSS-szelektornak.

<!DOCTYPE html>
<html lang="hu">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>DOM - Elem kivalasztas</title>
</head>
<body>
<hl id="title">F6cim</h1>
<p class="text">Ez egy bekezdés.</p>
<p class="text">Ez egy masik bekezdés.</p>
<div>
Span 1l
Span 2
</div>

<script>
// Egy adott ID-val rendelkez6 elem kivalasztasa
let titleElement = document.getElementById("title");
console.log(titleElement.textContent); // Fécim

// 0Osztaly alapjan tobb elem kivalasztasa
let textElements = document.getElementsByClassName("text");
console.log(textElements[0].textContent); // Ez egy bekezdés.

// Osszes adott tipusl elem kivédlasztdsa
let spans = document.getElementsByTagName("span");
console.log(spans.length); // 2

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

https://developer.mozilla.org/en-US/docs/Web/API/Document

Last
update:
2025/03/10
18:22

tanszek:oktatas:web_technologia_alapjai:js_dom https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:js_dom?rev=1741630969

// Az els6 talalat kivalasztdsa CSS-szelektorral
let firstParagraph = document.querySelector(".text");
console.log(firstParagraph.textContent); // Ez egy bekezdés.

// Az 0sszes talalat kivalasztasa CSS-szelektorral
let allParagraphs = document.querySelectorAll(".text");
allParagraphs.forEach(p => console.log(p.textContent));
// Ez egy bekezdés.
// Ez egy masik bekezdés.
</script>
</body>
</html>

Tartalom moédositasa

A DOM-ban talalhaté csomépontok tartalmat a kdvetkezd tulajdonsagok segitségével lehet elérni,
illetve mddositani:

e innerText és textContent - Mindkett6 a sz6veges tartalom lekérésére vagy mddositasara
szolgal, de kiilonbség koztiik, hogy az innerText figyelembe veszi a CSS lathatdsagi
bedllitasait, mig a textContent minden szdveget visszaad, fliggetlenll a stilusoktdl.

e innerHTML - Az elem HTML tartalmanak beallitdsara vagy lekérésére szolgal. Vigyazni kell
vele, mert ha kiils6 bemenetet tartalmaz, az alkalmazas sérllékennyé valhat az XSS
tdmadasokkal szemben.

<!DOCTYPE html>
<html lang="hu">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>DOM tartalom médositasa</title>
<style>
.hidden {
display: none;
}
</style>
</head>
<body>
<hl id="title">Eredeti cim</h1l>
<p id="paragraph">Ez egy bekezdés HTML formazassal.</p>
<p id="hiddenText" class="hidden">Ez egy rejtett szoveg.</p>

<script>
// innerText: figyelembe veszi a szoveg egyes részeinek lathatdsagat
let title = document.getElementById("title");
console.log(title.innerText); // Eredeti
title.innerText = "Uj cim";

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/01 19:17

2026/02/01 19:17 5/8 DOM manipuldcid JavaScript segitségével

// textContent: nem veszi figyelembe a CSS lathatdsagot
let hiddenText = document.getElementById("hiddenText");
console.log(hiddenText.textContent); // Ez egy rejtett szoveg

// innerHTML: a HTML tartalmat is kezeli
let paragraph = document.getElementById("paragraph");
console.log(paragraph.innerHTML); // Ez egy
bekezdés HTML formazassal.
paragraph.innerHTML = "Ez egy Uj bekezdés
moédositott HTML tartalommal.";
</script>
</body>
</html>

Eseménykezelés

A DOM-ban talalhaté csomdpontok eseményeinek (pl. kattintas, dupla kattintas, sz6vegmezd fékuszba
kerllése, drag&drop miveletek stb.) kezeléséhez a kovetkezd fliggvényt hasznalhatjuk:

e addEventListener(event, callback) - Eseményfigyelét (callback fliggvényt) ad az
elemhez, amely a megadott esemény (event) bekdvetkeztekor lefut.

<!DOCTYPE html>

<html lang="hu">

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Eseménykezelés példa</title>

</head>

<body>
<input type="text" id="name-input" placeholder="Ird be a neved ...">
<button id="submit-btn">Kiildés</button>

<script>
// Szovegmezd fokusz eseménykezeldje
document.getElementById("name-input").addEventListener("focus",
function() {
this.style.borderColor = "blue";
I E

// Gombra kattintds eseménykezeldje
document.getElementById("submit-btn").addEventListener("click",
function() {
let inputValue = document.getElementById("name-input").value;
alert("Hello, " + inputValue);
1)
</script>
</body>

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last

;83;}8;/10 tanszek:oktatas:web_technologia_alapjai:js_dom https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:js_dom?rev=1741630969

18:22

</html>

Attributumok és stilus modositasa

A DOM csomépontjainak attribdtumait és stilusat a kdvetkezé fliggvényekkel lehet elérni és
madositani:

e setAttribute(name, value), getAttribute(name) - Az elem attribdtumainak
beallitasara, valamint lekérdezésére szolgalnak.

e classList.add(className), classList.remove(className),
classList.toggle(className) - Osztalyok hozzaadasara, eltavolitédsara és
allapotvaltasara haszndalhaté.

e element.style - Az elem CSS-stilusanak kdzvetlen mddositasara hasznalhato.

<!DOCTYPE html>
<html lang="hu">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>AttribGtumok és stilus médositasa</title>
<style>
.highlight {
background-color: yellow;
font-weight: bold;
}
</style>
</head>
<body>
<button id="my-button">Szdvegkiemelés</button>
<p id="my-paragraph" class="text">Ez egy bekezdés.</p>

<script>
let button = document.getElementById("my-button");
let paragraph = document.getElementById("my-paragraph");

// setAttribute és getAttribute hasznalata

button.setAttribute("title", "Ez a gomb kiemeli a bekezdést vagy
eltavolitja a kiemelést."); // Tooltip szdveg beallitasa

console.log(button.getAttribute("title")); // Ez a gomb kiemeli a
bekezdést vagy eltavolitja a kiemelést.

// classlList haszndlata
paragraph.classList.add("highlight"); // Kiemeli a bekezdést a
highlight osztaly hozzaadasaval
setTimeout (() => {
paragraph.classList.remove("highlight"); // 2 masodperc
elteltével eltdvolitja a kiemelést

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/01 19:17

2026/02/01 19:17 7/8 DOM manipuldcid JavaScript segitségével

}, 2000);

button.addEventListener("click", () => {
paragraph.classList.toggle("highlight"); // Ha rajta van a
highlight osztaly, eltavolitja; ha nincs, hozzaadja

}) s
// style attribltum haszndlata
paragraph.style.color = "blue"; // Széveg szinének megvaltoztatasa
paragraph.style.fontSize = "20px"; // Beti(iméret ndvelése
</script>
</body>
</html>

Uj elemek létrehozésa és hozzaaddasa

A kovetkezd metddusokkal Uj csomdpontokat hozhatunk Iétre, és adhatunk hozza a DOM-hoz:

e createElement (tagName) - Egy Uj HTML elemet hoz Iétre a megadott tag-névvel.

e appendChild(node), prepend(node) - Az appendChild az elem végéhez, a prepend az
elejéhez ad hozza egy Uj gyerekelemet.

e insertBefore(newNode, referenceNode) - Egy Uj elemet szlr be egy masik adott elem
elé.

<!DOCTYPE html>
<html lang="hu">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Uj elemek létrehozédsa és hozzdaddsa</title>
</head>
<body>
<div id="container">
<p>Ez az eredeti bekezdés.</p>
</div>

<button id="add-btn">Uj elem hozzdaddsa</button>

<script>
let container = document.getElementById("container");
let button = document.getElementById("add-btn");

button.addEventListener("click", () => {
// createElement haszndlata
let newParagraph = document.createElement("p");
newParagraph.textContent = "Ez egy Uj bekezdés.";

// appendChild hasznalata (hozzaadja a végére)

Institute of Information Science - University of Miskolc - https://edu.iit.uni-miskolc.hu/

Last

;83258:3/10 tanszek:oktatas:web_technologia_alapjai:js_dom https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:js_dom?rev=1741630969

18:22

container.appendChild(newParagraph);

// prepend haszndlata (hozzdadja az elejére)

let firstParagraph = document.createElement("p");
firstParagraph.textContent = "Ez egy bekezdés az elején.";
container.prepend(firstParagraph);

// insertBefore haszndlata (Uj elem beszlrasa egy masik elé)
let middleParagraph = document.createElement("p");
middleParagraph.textContent = "Ez egy koztes bekezdés.";

let referenceNode = container.children[1l]; // Az elsl bekezdés
utdn helyezzik el
container.insertBefore(middleParagraph, referenceNode);

});

</script>

</body>
</html>

Feladat

A feladat egy egyszer, dinamikus teendd lista készitése.

e Legyen egy <input> szOveges mez0, ahova a felhasznalé beirhat egy Uj teendét.

e Legyen egy ,Hozzdadas” gomb, melynek lenyomasakor a beirt széveg kertljon fel egy
listara.

 Alistan szerepld elemekre kattintva azok legyenek athlzva (CSS: text-decoration: line-
through).

e Az oldal elemeinek formazasahoz hasznalj CSS stilusokat!

Az elkészllt megoldast toltsd fel a GitHub repository-dba!

From:
https://edu.iit.uni-miskolc.hu/ - Institute of Information Science - University of Miskolc

Permanent link:
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:js_dom?rev=1741630969

Last update: 2025/03/10 18:22

https://edu.iit.uni-miskolc.hu/ Printed on 2026/02/01 19:17

https://edu.iit.uni-miskolc.hu/
https://edu.iit.uni-miskolc.hu/tanszek:oktatas:web_technologia_alapjai:js_dom?rev=1741630969

	[DOM manipuláció JavaScript segítségével]
	DOM manipuláció JavaScript segítségével
	Document Object Model
	DOM manipulációs technikák
	Elemek kiválasztása
	Tartalom módosítása
	Eseménykezelés
	Attribútumok és stílus módosítása
	Új elemek létrehozása és hozzáadása

	Feladat

